The Group of Self-distributivity Is Bi-orderable
نویسنده
چکیده
We prove that the group of left self-distributivity, a cousin of Thompson’s group F and of Artin’s braid group B∞ that describes the geometry of the identity x(yz) = (xy)(xz), admits a bi-invariant linear ordering. To this end, we define a partial action of this group on finite binary trees that preserves a convenient linear ordering.
منابع مشابه
On spaces of Conradian group orderings
We classify C-orderable groups admitting only finitely many C-orderings. We show that if a C-orderable group has infinitely many C-orderings, then it actually has uncountably many C-orderings, and none of these is isolated in the space of C-orderings. As a relevant example, we carefully study the case of Baumslag-Solitar’s group B(1, 2). We show that B(1, 2) has four C-orderings, each of which ...
متن کاملOrdering pure braid groups on closed surfaces
We prove that the pure braid groups on closed, orientable surfaces are bi-orderable, and that the pure braid groups on closed, non-orientable surfaces have generalized torsion, thus they are not bi-orderable.
متن کاملAlexander polynomial obstruction of bi-orderability for rationally homologically fibered knot groups
We show that if the fundamental group of the complement of a rationally homologically fibered knot in a rational homology 3sphere is bi-orderable, then its Alexander polynomial has at least one positive real root. Our argument can be applied for a finitely generated group which is an HNN extension with certain properties.
متن کاملIsolated Points in the Space of Left Orderings of a Group
Let G be a left orderable group and LO(G) the space of all left orderings. We investigate the circumstances under which a left ordering < of G can correspond to an isolated point in LO(G), in particular we extend the main result of [9] to the case of uncountable groups. With minor technical restrictions on the group G, we find that no dense left ordering is isolated in LO(G), and that the closu...
متن کاملOrdering Pure Braid Groups on Compact, Connected Surfaces
The purpose of this paper is to answer the following question: Are pure braid groups on compact, connected surfaces bi-orderable? We will prove that the answer is positive for orientable surfaces, and negative for the non-orientable ones. In this section we give the basic definitions and classical results. We also explain what is known about orders on braid groups, and finally we state our resu...
متن کامل